
Website Vulnerability Scanner Report

Summary

Overall risk level:

High

Risk rat ings:
High: 5

Medium: 3

Low: 3

Info: 8

Scan informat ion:

Start time: 2019-05-24 09:07:56

Finish time: 2019-05-24 09:11:22

Scan duration: 3 min, 26 sec

Tests performed: 19/20

Scan status: Finished

Findings

 Vulnerabilities found for server-side software

Risk
Level

CVSS CVE Summary Exploit
Affected
software

 7.5 CVE-2017-7679

In Apache httpd 2.2.x before 2.2.33 and 2.4.x before 2.4.26, mod_mime can read
one byte past the end of a buffer when sending a malicious Content-Type
response header.

N/A
http_server
2.4.25

 7.5 CVE-2017-7668

The HTTP strict parsing changes added in Apache httpd 2.2.32 and 2.4.24
introduced a bug in token list parsing, which allows ap_find_token() to search past
the end of its input string. By maliciously crafting a sequence of request headers,
an attacker may be able to cause a segmentation fault, or to force ap_find_token()
to return an incorrect value.

N/A
http_server
2.4.25

 7.5 CVE-2017-3169

In Apache httpd 2.2.x before 2.2.33 and 2.4.x before 2.4.26, mod_ssl may
dereference a NULL pointer when third-party modules call
ap_hook_process_connection() during an HTTP request to an HTTPS port.

N/A
http_server
2.4.25

 7.5 CVE-2017-3167

In Apache httpd 2.2.x before 2.2.33 and 2.4.x before 2.4.26, use of the
ap_get_basic_auth_pw() by third-party modules outside of the authentication
phase may lead to authentication requirements being bypassed.

N/A
http_server
2.4.25

 7.2 CVE-2019-0211

In Apache HTTP Server 2.4 releases 2.4.17 to 2.4.38, with MPM event, worker or
prefork, code executing in less-privileged child processes or threads (including
scripts executed by an in-process scripting interpreter) could execute arbitrary
code with the privileges of the parent process (usually root) by manipulating the
scoreboard. Non-Unix systems are not affected.

N/A
http_server
2.4.25

 Details

Risk description:

These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service

attacks. An attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the

system.

Recommendation:

We recommend you to upgrade the affected software to the latest version in order to eliminate the risk of these vulnerabilities.

 Cross-Site Scripting

Vulnerable
Page

Vulnerable
Parameter

Method Attack Vector

/dvwa/login.ph
p

username POST
http://testing1.pentest-tools.com/dvwa/login.php
POST Data: username=</div><script>alert(1);</script><div>



1 / 8

https://nvd.nist.gov/vuln/detail/CVE-2017-7679
https://nvd.nist.gov/vuln/detail/CVE-2017-7668
https://nvd.nist.gov/vuln/detail/CVE-2017-3169
https://nvd.nist.gov/vuln/detail/CVE-2017-3167
https://nvd.nist.gov/vuln/detail/CVE-2019-0211
http://testing1.pentest-tools.com/dvwa/login.php

/dvwa/vulnera
bilities/brute/ username GET

http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZA
P&username=%27%22%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E 

/dvwa/vulnera
bilities/sqli/

id GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=%27%22
%3Cscript%3Ealert%281%29%3B%3C%2Fscript%3E



/dvwa/vulnera
bilities/xss_r/

name GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_r/?name=%3C%2Fpre%3E%3C
script%3Ealert%281%29%3B%3C%2Fscript%3E%3Cpre%3E



/dvwa/vulnera
bilities/xss_s/

txtName POST
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
POST Data: txtName=</div><script>alert(1);</script><div>



/dvwa/vulnera
bilities/xss_s/

mtxMessage POST
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
POST Data: mtxMessage=</div><script>alert(1);</script><div>



 Details

Risk description:

The risk exists that a malicious actor injects JavaScript code and runs it in the context of a user's session in the application. This could potentially

lead to various effects such as stealing session cookies, calling application features on behalf of another user, exploiting browser vulnerabilities.

Successful exploitation of Cross-Site Scripting attacks requires human interaction (ex. determine the user access a special link by social

engineering).

Recommendation:

There are several ways to mitigate XSS attacks. We recommend to:

- never trust user input

- always encode and escape user input (using a Security Encoding Library)

- use the HTTPOnly cookie flag to protect from cookie theft

- implement Content Security Policy

- use the X-XSS-Protection Response Header

References:

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

 SQL Injection

Vulnerable Page
Vulnerable
Parameter

Method Attack Vector

/dvwa/vulnerabilitie
s/brute/

username GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&passw
ord=ZAP&username=ZAP



/dvwa/vulnerabilitie
s/sqli/

id GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=Z
AP%27+AND+%271%27%3D%271%27+--+



/dvwa/vulnerabilitie
s/sqli_blind/

id GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli_blind/?Submit=Submit
&id=ZAP%27+AND+%271%27%3D%271%27+--+



/dvwa/vulnerabilitie
s/xss_s/

btnSign POST
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
POST Data: btnSign=Sign Guestbook" AND "1"="1" --



 Details

Risk description:

The risk exists that an attacker gains unauthorized access to the information from the database of the application. He could extract information

such as: application usernames, passwords, client information and other application specific data.

Recommendation:

We recommend implementing a validation mechanism for all the data received from the users.

The best way to protect against SQL Injection is to use prepared statements for every SQL query performed on the database.

Otherwise, the user input can also be sanitized using dedicated methods such as: mysqli_real_escape_string.

More information about SQL injection and the way to protect against this attack can be found here:

https://www.owasp.org/index.php/SQL_Injection

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md

 File Inclusion

2 / 8

http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=%2527%2522%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_r/?name=%253C%252Fpre%253E%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E%253Cpre%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_r/?name=%253C%252Fpre%253E%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E%253Cpre%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_r/?name=%253C%252Fpre%253E%253Cscript%253Ealert%25281%2529%253B%253C%252Fscript%253E%253Cpre%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/?Login=Login&password=ZAP&username=ZAP
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli_blind/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli_blind/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli_blind/?Submit=Submit&id=ZAP%2527+AND+%25271%2527%253D%25271%2527+--+
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
https://www.owasp.org/index.php/SQL_Injection
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md

Vulnerable
Page

Vulnerable
Parameter

Method Attack Vector

/dvwa/vulnerabiliti
es/fi/

page GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=%2Fetc%2Fpas
swd



/dvwa/vulnerabiliti
es/fi/

page GET
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=http%3A%2F%2
Fwww.google.com%2F



 Details

Risk description:

The risk exists that an attacker can manipulate the affected parameter in order to load or execute any locally or remote stored file.

This could lead to reading arbitrary files, code execution, Cross-Site Scripting, denial of service, sensitive information disclosure.

Recommendation:

The most effective solution to eliminate file inclusion vulnerabilities is to avoid passing user-submitted input to any filesystem/framework API. If

this is not possible the application can maintain a white list of files, that may be included by the page, and then use an identifier (for example the

index number) to access to the selected file. Any request containing an invalid identifier has to be rejected, in this way there is no attack surface

for malicious users to manipulate the path.

References:

https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion

https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion

 OS Command Injection

Vulnerable Page Vulnerable Parameter Method Attack Vector

/dvwa/vulnerabilities/exec/ ip POST
http://testing1.pentest-tools.com/dvwa/vulnerabilities/exec/
POST Data: ip=ZAP&cat /etc/passwd&



 Details

Risk description:

The risk exists that an attacker uses the application to run OS commands with the privileges of the vulnerable application.

This could lead (but not limited) to Remote Code Execution, Denial of Service, Sensitive Information Disclosure, Sensitive Information Deletion.

Recommendation:

There are multiple ways to mitigate this attack:

- avoid calling OS commands directly (use built-in library functions)

- escape values added to OS commands specific to each OS

- implement parametrization in conjunction with Input Validation (segregate data by command; implement Positive or whitelist input validation;

White list Regular Expression)

In order to provide Defense in Depth, we also recommend to allocate the lowest privileges to web applications.

References:

https://www.owasp.org/index.php/Command_Injection

https://www.owasp.org/index.php/OS_Command_Injection_Defense_Cheat_Sheet

 Communication is not secure

http://testing1.pentest-tools.com/dvwa/

 Details

Risk description:

The communication between the web browser and the server is done using the HTTP protocol, which transmits data unencrypted over the

network. Thus, an attacker who manages to intercept the communication at the network level, is able to read and modify the data transmitted

(including passwords, secret tokens, credit card information and other sensitive data).

Recommendation:

We recommend you to reconfigure the web server to use HTTPS - which encrypts the communication between the web browser and the server.

 Interesting files found

URL Summary

3 / 8

http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=%252Fetc%252Fpasswd
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=%252Fetc%252Fpasswd
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=%252Fetc%252Fpasswd
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=http%253A%252F%252Fwww.google.com%252F
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=http%253A%252F%252Fwww.google.com%252F
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/?page=http%253A%252F%252Fwww.google.com%252F
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion
http://testing1.pentest-tools.com/dvwa/vulnerabilities/exec/
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/OS_Command_Injection_Defense_Cheat_Sheet

/dvwa/login.php Admin login page/section found.

/dvwa/.gitignore .gitignore file found. It is possible to grasp the directory structure.

/dvwa/config/ Directory indexing found.

 Details

Risk description:

These files/folders usually contain sensitive information which may help attackers to mount further attacks against the server. Manual

validation is required.

Recommendation:

We recommend you to analyze if the mentioned files/folders contain any sensitive information and restrict their access according to the

business purposes of the application.

 Server information disclosure

URL Summary

/dvwa/?=PHPB8B5F2A0-3C92-11d3-A3A9-

4C7B08C10000

PHP reveals potentially sensitive information via certain HTTP requests that contain specific
QUERY strings.

/dvwa/config/ Configuration information may be available remotely.

/dvwa/docs/ Directory indexing found.

/dvwa/phpinfo.php
PHP is installed, and a test script which runs phpinfo() was found. This gives a lot of system
information.

 Details

Risk description:

An attacker could use these files to find information about the backend application, server software and their specific versions. This information

could be further used to mount targeted attacks against the server.

Recommendation:

We recommend you to remove these scripts if they are not needed for business purposes.

More information about this issue:

http://projects.webappsec.org/w/page/13246936/Information%20Leakage

 Server software and technology found

Software / Vers ion Category

 Debian Operating Systems

 Apache 2.4.25 Web Servers

 Details

Risk description:

An attacker could use this information to mount specific attacks against the identified software type and version.

Recommendation:

We recommend you to eliminate the information which permit the identification of software platform, technology, server and operating system:

HTTP server headers, HTML meta information, etc.

More information about this issue:

https://www.owasp.org/index.php/Fingerprint_Web_Server_(OTG-INFO-002).

 Missing HTTP security headers

HTTP Security Header Header Role Status

X-Frame-Options Protects against Clickjacking attacks Not set

4 / 8

http://testing1.pentest-tools.com/dvwa/login.php
http://testing1.pentest-tools.com/dvwa/.gitignore
http://testing1.pentest-tools.com/dvwa/config/
http://testing1.pentest-tools.com/dvwa/?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000
http://testing1.pentest-tools.com/dvwa/config/
http://testing1.pentest-tools.com/dvwa/docs/
http://testing1.pentest-tools.com/dvwa/phpinfo.php
http://projects.webappsec.org/w/page/13246936/Information%20Leakage
http://debian.org
http://apache.org
https://www.owasp.org/index.php/Fingerprint_Web_Server_(OTG-INFO-002)

X-XSS-Protection Mitigates Cross-Site Scripting (XSS) attacks Not set

X-Content-Type-Options Prevents possible phishing or XSS attacks Not set

 Details

Risk description:

Because the X-Frame-Options header is not sent by the server, an attacker could embed this website into an iframe of a third party website. By

manipulating the display attributes of the iframe, the attacker could trick the user into performing mouse clicks in the application, thus

performing activities without user's consent (ex: delete user, subscribe to newsletter, etc). This is called a Clickjacking attack and it is described

in detail here:

https://www.owasp.org/index.php/Clickjacking

The X-XSS-Protection HTTP header instructs the browser to stop loading web pages when they detect reflected Cross-Site Scripting (XSS)

attacks. Lack of this header exposes application users to XSS attacks in case the web application contains such vulnerability.

The HTTP X-Content-Type-Options header is addressed to Internet Explorer browser and prevents it from reinterpreting the content of a web

page (MIME-sniffing) and thus overriding the value of the Content-Type header). Lack of this header could lead to attacks such as Cross-Site

Scripting or phishing.

Recommendation:

We recommend you to add the X-Frame-Options HTTP response header to every page that you want to be protected against Clickjacking

attacks.

More information about this issue:

https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

We recommend setting the X-XSS-Protection header to "X-XSS-Protection: 1; mode=block".

More information about this issue:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

We recommend setting the X-Content-Type-Options header to "X-Content-Type-Options: nosniff".

More information about this issue:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

 Cookie No HttpOnly Flag

Affected items Evidence

http://testing1.pentest-tools.com/dvwa/ Set-Cookie: PHPSESSID

http://testing1.pentest-tools.com/dvwa/ Set-Cookie: security

http://testing1.pentest-tools.com/dvwa/vulnerabilities/weak_id/ Set-Cookie: dvwaSession

 Details

Risk description:

A cookie has been set without the HttpOnly flag, which means that the cookie can be accessed by JavaScript. If a malicious script can be run on

this page then the cookie will be accessible and can be transmitted to another site. If this is a session cookie then session hijacking may be

possible.

Recommendation:

Ensure that the HttpOnly flag is set for all cookies.

http://www.owasp.org/index.php/HttpOnly

 Robots.txt file not found

 No security issue found regarding client access policies

 No password input found (clear-text submission test)

 No JavaScript vulnerabilities found

5 / 8

https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

 No sensitive files found

 No server software was identified

 No administration consoles were found

 Spider results: 28 dynamic URLs of total 50 URLs crawled

ID METHOD URL PARAMS

1 GET /dvwa/instructions.php doc=readme

2 POST /dvwa/setup.php
user_token=9e16aa41c679e13f4cf884b3e2d9ebde&create_db=Crea
te+%2F+Reset+Database

3 POST /dvwa/login.php
username=ZAP&password=ZAP&user_token=b8a349cc3852ee55dd
bafd475d91a33d&Login=Login

4 GET /dvwa/security.php phpids=off

5 GET /dvwa/instructions.php doc=copying

6 POST /dvwa/vulnerabilities/exec/ ip=ZAP&Submit=Submit

7 GET /dvwa/vulnerabilities/xss_d/ default

8 POST
/dvwa/security.php?test=%2522%3E%3Cscript%3Eeval(win

dow.name)%3C/script%3E

security=low&user_token=40c6007dec8ddf0d86245184ac296544&s
eclev_submit=Submit

9 POST /dvwa/vulnerabilities/xss_s/ txtName=ZAP&mtxMessage=&btnClear=Clear+Guestbook

10 GET /dvwa/vulnerabilities/csrf/ Change=Change&password_conf=ZAP&password_new=ZAP

11 GET /dvwa/vulnerabilities/fi/ page=include.php

12 POST /dvwa/vulnerabilities/upload/ MAX_FILE_SIZE=100000&uploaded=test_file.txt&Upload=Upload

13 POST /dvwa/vulnerabilities/xss_s/ txtName=ZAP&mtxMessage=&btnSign=Sign+Guestbook

14 GET /dvwa/instructions.php doc=changelog

15 GET /dvwa/vulnerabilities/brute/ Login=Login&password=ZAP&username=ZAP

16 GET /dvwa/vulnerabilities/fi/ page=file2.php

17 GET /dvwa/vulnerabilities/fi/ page=file3.php

18 GET /dvwa/instructions.php doc=PHPIDS-license

19 GET /dvwa/vulnerabilities/sqli/ Submit=Submit&id=ZAP

20 GET /dvwa/instructions.php doc=PDF

21 GET /dvwa/security.php phpids=on

22 GET /dvwa/vulnerabilities/xss_r/ name=ZAP

23 GET /dvwa/vulnerabilities/sqli_blind/ Submit=Submit&id=ZAP

24 GET /dvwa/security.php test=%2522%3E%3Cscript%3Eeval(window.name)%3C/script%3E

25 GET /dvwa/vulnerabilities/fi/ page=file1.php

26 POST /dvwa/vulnerabilities/captcha/ step=1&password_new=ZAP&password_conf=ZAP&Change=Change

27 POST /dvwa/security.php
security=low&user_token=080654f0ab97c8c1beab2864c6c8af90&se
clev_submit=Submit

28 GET /dvwa/ids_log.php clear_log=Clear+Log

6 / 8

http://testing1.pentest-tools.com/dvwa/instructions.php
http://testing1.pentest-tools.com/dvwa/setup.php
http://testing1.pentest-tools.com/dvwa/login.php
http://testing1.pentest-tools.com/dvwa/security.php
http://testing1.pentest-tools.com/dvwa/instructions.php
http://testing1.pentest-tools.com/dvwa/vulnerabilities/exec/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_d/
http://testing1.pentest-tools.com/dvwa/security.php?test=%252522%253E%253Cscript%253Eeval(window.name)%253C/script%253E
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/csrf/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/upload/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_s/
http://testing1.pentest-tools.com/dvwa/instructions.php
http://testing1.pentest-tools.com/dvwa/vulnerabilities/brute/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/
http://testing1.pentest-tools.com/dvwa/instructions.php
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli/
http://testing1.pentest-tools.com/dvwa/instructions.php
http://testing1.pentest-tools.com/dvwa/security.php
http://testing1.pentest-tools.com/dvwa/vulnerabilities/xss_r/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/sqli_blind/
http://testing1.pentest-tools.com/dvwa/security.php
http://testing1.pentest-tools.com/dvwa/vulnerabilities/fi/
http://testing1.pentest-tools.com/dvwa/vulnerabilities/captcha/
http://testing1.pentest-tools.com/dvwa/security.php
http://testing1.pentest-tools.com/dvwa/ids_log.php

7 / 8

Scan coverage information

List of tests performed (19/20)

 Fingerprinting the server software and technology...
 Checking for vulnerabilities of server-side software...
 Analyzing HTTP security headers...
 Checking for secure communication...
 Checking robots.txt file...
 Checking client access policies...
 Checking for clear-text submission of passwords (quick scan)...
 Checking for JavaScript vulnerabilities...
 Searching for sensitive files...
 Checking for interesting files...
 Checking for information disclosure...
 Checking for software identification...
 Checking for administration consoles...
 Spidering target...
 Scanning for XSS vulnerabilities...
 Scanning for SQL Injection vulnerabilities...
 Scanning for File Inclusion vulnerabilities...
 Scanning for OS Command Injection vulnerabilities...
 Scanning for Cookie No HttpOnly Flag vulnerabilities...

Scan parameters

Website URL: http://testing1.pentest-tools.com/dvwa/
Scan type: Full_new
Authentication: False

8 / 8

	Website Vulnerability Scanner Report
	http://testing1.pentest-tools.com/dvwa/
	Summary
	Findings
	Vulnerabilities found for server-side software
	Cross-Site Scripting
	SQL Injection
	File Inclusion
	OS Command Injection
	Communication is not secure
	Interesting files found
	Server information disclosure
	Server software and technology found
	Missing HTTP security headers
	Cookie No HttpOnly Flag
	Robots.txt file not found
	No security issue found regarding client access policies
	No password input found (clear-text submission test)
	No JavaScript vulnerabilities found
	No sensitive files found
	No server software was identified
	No administration consoles were found
	Spider results: 28 dynamic URLs of total 50 URLs crawled
	Scan coverage information
	List of tests performed (19/20)
	Scan parameters

